的情况应该是三种碱基组合来决定一种氨基酸。
这样的话,可以形成64种三联体组合。
如果三联体密码子与氨基酸的对应关系跟三联体密码子碱基的组成顺序无关的话,那么三联体碱基的组合会减少到20种。
接着去年年中,在Crick的撺掇下,布伦纳、雅各布以及梅塞尔森这三个家伙聚到一起证实了mRNA的存在。
随后尼伦伯格在今年年初提出了UUU编码phe的结论,与这个结论一同公布的还有一份很可靠的实验结果:
尼伦伯格在无细胞体系中添加了可溶性RNA,发现这种RNA可以极大地提升含有标记氨基酸插入的新合成蛋白的量,并且蛋白合成量和ribosomal RNA添加量成比例。
接着他又向该系统/mL添加了10ug polyuridylic acid也就是多尿苷酸,这非常显著地刺激了同位素标记的苯丙氨酸插入新合成的蛋白中,于此形成鲜明对比的是,多尿苷酸不会影响其他同位素标记的氨基酸插入新合成的蛋白中。
最后尼伦伯格证实,向无细胞体系添加多尿苷酸,反应产物是聚苯丙氨酸,由此推断UUU编码phe。
于是从今年年中.差不多就是徐云穿越前的两个月开始吧。
国际生物学界便有很多人在哔哔他们已经破译了生物密码,于是陆光达这种跨专业的生物白痴就被忽悠着信了
但实际上DNA这玩意儿在徐云穿越来的后世,都是妥妥的屎山级代码好伐?
虽然科学家已经掌握了基因组序列并且在测序这块一路狂奔,但整体依旧是管中窥豹。
比如至今生物界都不清楚基因是怎么特异表达的,基因又是怎样影响具体性状的——人和我们的近亲黑猩猩绝大部分序列都是相同的,但是却完完全全是两个物种。
诸如ENCODE之类的计划一个又一个列项,但估摸着柯南大结局都不会见到结果。
人类有23对46条染色体,每条染色体上有几千到几万不等的基因,每一个基因上有几万到几十万不等的位点。
合计每个人有约25000个基因(一说30000个),三十亿个位点。
所以现在研究得比较明确的大多都是单基因遗传病,但很多疾病都是多基因遗传病,比如高血压糖尿病等等,所以整体依旧是任重而道远。
视线再回归现实。
由于现场有着许永进存在以及光环
本章未完,请点击下一页继续阅读!