定轴旋转算符的矩阵元呢,则是一个10升的水桶。
10升水桶的容积显然要比矿泉水瓶大,但对于单人单次的饮用量来说,水桶的大容积其实没什么意义。
反倒是因为容积大重量重,水桶搬运起来消耗的体力还要比矿泉水多。
所以和有限角度的矢量转相比,绕限定轴旋转算符的矩阵元性价比可谓极低。
随后铃木厚人深吸一口气,压下心中的狂喜,装出了一副探究好奇的表情:
“哦?某个范围里的赝矢量数值不符合叠加交换律?”
“既然如此.徐桑,你能找出那个出问题的范围吗?”
铃木厚人的目的只是想把徐云逼到一个退无可退的地步,结果没想到,徐云居然爽快的点了点头:
“没问题,在TK大于6,约束条件大于7Φ,全反对称张量非0的时候,得到的会是一个自旋为1/2而非1的有质量矢量场,同时拉格朗日量在形式上会多一个负号。”
铃木厚人顿时一愣,脑海中下意识就一个反应:
这货是在唬人的吧?
那么密集的计算量下,他还能找到具体的区间?
这怎么可能?
而铃木厚人身边的安东·塞林格则反应更快一些,一步跨到了数据终端旁边,认真的比对起了数据。
“TK大于6约束条件大于7K-G场.全反对称张量非0”
安东·塞林格飞快的输入着数据,几秒钟后,他便皱起了眉头。
虽然缺乏足够的计算时间,徐云所说的有质量矢量场自旋一时半会儿算不出来。
但对于他这种当世顶尖的量子物理大佬来说,拉格朗日量的形式却并不难判断。
根据简单的分析,他大致可以判断拉格朗日量在形式上.
确实多了一个负号。
这个负号不是纯粹数学上的负数,而是指代能量为负。
其实吧。
单纯的能量为负也没啥问题,理论情境中有一些例子完全可以具备负能量。
比如在卡西米尔效应中,当两块不带电金属板彼此靠近到非常接近时出现的吸力来自板内外真空的能量差,板之间的真空就具有负能量。
但问题是眼下构建的是个矢量场,对于矢量场概念,粒子物理学里有一句略有些文绉绉的俗语来形容,叫做:
能量不囿于下,E有下界,但无上界。
也就是能量为负的矢量场情
本章未完,请点击下一页继续阅读!